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Abstract

In many motor tasks, optimal performance presupposes that human movement planning is based on an accurate internal
model of the subject’s own motor error. We developed a motor choice task that allowed us to test whether the internal
model implicit in a subject’s choices differed from the actual in isotropy (elongation) and variance. Subjects were first
trained to hit a circular target on a touch screen within a time limit. After training, subjects were repeatedly shown pairs of
targets differing in size and shape and asked to choose the target that was easier to hit. On each trial they simply chose a
target – they did not attempt to hit the chosen target. For each subject, we tested whether the internal model implicit in her
target choices was consistent with her true error distribution in isotropy and variance. For all subjects, movement end
points were anisotropic, distributed as vertically elongated bivariate Gaussians. However, in choosing targets, almost all
subjects effectively assumed an isotropic distribution rather than their actual anisotropic distribution. Roughly half of the
subjects chose as though they correctly estimated their own variance and the other half effectively assumed a variance that
was more than four times larger than the actual, essentially basing their choices merely on the areas of the targets. The task
and analyses we developed allowed us to characterize the internal model of motor error implicit in how humans plan
reaching movements. In this task, human movement planning – even after extensive training – is based on an internal
model of human motor error that includes substantial and qualitative inaccuracies.
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Introduction

Human movement is prone to error. This error may be reduced

after extensive practice or under careful control, but can never be

entirely eliminated. It can have severe consequences when, for

example, the outcome of a surgical procedure hangs on the

accuracy of the surgeon’s movements. Human decisions often

reflect an internal model of the probabilistic regularities of the

world [1]. We would expect to find such an internal model of the

uncertainties in our own movements.

Indeed, the unpredictable error inherent in movement has

provided a rich and precise laboratory model of decision under

uncertainty. Recent studies have shown that human decisions

under visual and motor uncertainty are close to those predicted by

Bayesian Decision Theory, maximizing expected gain [2–9].

However, these studies are not particularly sensitive tests of

subjects’ knowledge of their own distributions.

In one early study, for example, Trommershäuser, Maloney, &

Landy [7] asked human subjects to make speeded reaching

movements to a touch screen. There were two partly overlapped

circular regions on the screen (Figure 1A). A touch within the

green region earned a reward, within the red, a penalty. Any end

points outside of both regions earned neither reward nor penalty.

The challenge to the subject was to decide where he should aim in

order to maximize his expected winnings.

In Figure 1A we illustrate three possible aim points (golden

diamonds) and a realization of movement end points around the

aim point. The aim point in the upper configuration is so close to

the red penalty circle that the penalty is incurred on a high

proportion of trials. In contrast, the aim point in the lower

configuration is far from the penalty area and it is unlikely that the

subject will incur a penalty on any given trial. However, on many

trials, her end point falls outside of both circles and she earns no

reward for her effort.

The aim point that maximizes expected gain for the subject with

this motor error distribution is shown in the middle configuration:

it is away from the center of the rewarding region in the direction

opposite to the penalty region. Its position depends on the subject’s

error distribution, the locations of reward and penalty regions, and

the magnitudes of rewards and penalties. Trommershäuser et al.

[7] found that human subjects shifted their aim points with varying

reward conditions and the amount of rewards they won were close

to that predicted by an optimal choice of aim point, ranging from

92.0% to 106.9% of the latter for different subjects. The

implication is that people can compensate for their motor

uncertainty in order to maximize monetary gain. Given this result
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and similar results found in the literature, it is tempting to assume

that human movement planning is based on an accurate model of

motor uncertainty.

One goal of the present study is to interrogate and ultimately

challenge this assumption. One reason to do so is that previous

evaluations of human performance are not sensitive to even gross

errors in the representation of motor uncertainty. In Trommer-

shäuser et al.’s [7] experiment, for example, human subjects’ end

points on the screen formed a bivariate Gaussian distribution

centered at the aim point. Suppose a subject correctly estimates

the variance of the end points but mistakenly assumes that the end

points are distributed uniformly in a fixed circle around the aim

point. This subject has a model of his own error distribution that is

markedly different from her actual error distribution. The two

distributions are illustrated in an inset to Figure 1B.

To evaluate the performance of such a hypothetical subject, we

simulated the six reward conditions of Trommershäuser et al. [7]

and plotted the results in Figure 1B. The differences between the

optimal aim point (golden diamond) and the aim point of the

hypothetical subject (black cross) is small, less than 1 mm on

average and the average expected gain of the hypothetical subject

was as high as 97.0% of the maximum expected gain. That is,

although the hypothetical subject had an inaccurate model of her

own error distribution, her performance would probably be

Figure 1. Performance of a hypothetical subject in Trommershäuser et al.’s [7] experiment. The subject made speeded hand movements
to the target (green circle) for rewards. The red circle denotes the penalty region. The experiment had six conditions: the penalties were either 2100
or 2500, and the distance between the two circles is one of 1, 1.5, or 2 times of the radius of the circle. The radii of all circles were 8.97 mm. The
reward for hitting the green circle was always +100. Falling outside both circles led to 0 reward. A. Consequences of possible aim points. The subjects’
actual error distributions were indistinguishable from isotropic, bivariate Gaussian distributions. The aim point is shown in gold in three examples. A
possible distribution of end points of actual reaches is shown around each end point (SD 4.05 mm). Each end point incurs a penalty or reward (or
both) depending on where it falls within the red or green regions. In the topmost example, the subject is likely to incur many large penalties. In the
bottommost, the subject incurs few penalties but on many trials the end point falls outside both circles and incurs 0 reward. The golden diamond in
the middle diagram is the aim point that maximizes expected gain for an subject with this error distribution and the rewards and stimuli shown. B. A
hypothetical observer with an erroneous model. The hypothetical subject correctly estimates her SD 4.05 mm but makes an erroneous assumption
about the shape of her error distribution around the aim point. She assumes that it is a circular, uniform distribution rather than a bivariate Gaussian
error distribution and plans her movements accordingly. The golden diamond denotes the aim point based on the true Gaussian that would
maximize expected gain in each condition. The black cross denotes the hypothetical subject’s choice of aim point based on her erroneous
distributional model. The percentage on the right of each panel denotes the expected gain of the hypothetical subject divided by the maximum
expected gain possible. Note that the hypothetical subject’s performance is not far from optimal.
doi:10.1371/journal.pcbi.1003080.g001

Author Summary

When you play darts, which part of the dartboard do you
aim at? The tiny bull’s eye is worth 50 points. The 20-point
section is much larger. If you’re not very good at dart
throwing you may want to take that into account. Your
choice of target depends not on how good you are but on
how good you think you are – your internal model of your
own motor error distribution. If you think you hit exactly
where you aim, you should aim at the bull’s eye. If you
assume you have less error in the horizontal direction, you
would tend to choose vertically elongated targets over
horizontally elongated ones. Previous work in movement
planning hints that people have accurate models of their
own motor error; we test this hypothesis. People first
practiced speeded reaching to touch targets. We then
asked them to choose between targets of varying shapes
and sizes. Their pattern of choices allows us to estimate
their internal models of their own motor error and
compare them to their actual motor error distributions.
We found – in contrast to previous work – that people’s
models of their own motor ability were markedly
inaccurate.

Testing Humans’ Model of Motor Uncertainty
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indistinguishable from optimal in Trommershäuser et al.’s [7]

experiment, and in any of the studies we cited earlier.

We developed a simple motor choice task to more directly

assess humans’ internal models of their own motor error

distributions. Human subjects were first trained to make

speeded movements to radially-symmetric targets on a com-

puter display. They were permitted only a short time to

execute the movement and hit the screen. During the training,

we estimated subjects’ true motor error distributions w x,yð Þ.
They were all well described as vertically elongated, bivariate

Gaussian distributions.

In the second phase of the experiment, subjects did not attempt

to hit targets. Instead they were given pairs of potential targets,

one rectangle and one circle, of specific sizes. The task was to

choose the target that was easier to hit (Figure 2A). Subjects knew

that at the end of the experiment they would attempt to hit a

small number of the targets they had chosen and they would be

paid a cash reward for each success. The cash reward for either

target was the same and it was therefore in their interest to choose

the target in each pair that offered the higher probability of

success.

If the targets are denoted T1 and T2 then the true probability of

success in hitting the ith target is

pi ~

ð
Ti

w x,yð Þ dx dy , i~1,2: ð1Þ

The target is just the region of integration and the probability of

success is just the proportion of the probability density function

contained within the target. (We verified in training that subjects

aimed at the centroid of the targets.)

But how is the subject to decide between targets? We consider

the possibility that she has some internal estimate of the

distribution of her own motor uncertainty, y x,yð Þ. In evaluating

each target, she computes an estimate of probability based on this

estimate,

p’i ~

ð
Ti

y x,yð Þ dx dy , i~1,2, ð2Þ

and then chooses whichever target offers the higher probability.

This strategy would maximize expected gain in our task if the

subject’s estimate of her distribution were accurate:

y x,yð Þ ~ w x,yð Þ. If it is not, then some of her choices will

differ from the choice dictated by Eq. 1.

We illustrate the method by explaining how we test for isotropy

(Figure 2B). Suppose the subject is given two rectangles, one

horizontal and one vertical, of the same size and is asked to choose

the one that is easier to hit. If the subject’s internal model is an

isotropic distribution, i.e. equal variance in the horizontal and

vertical directions, the subject should be indifferent between the

two rectangles. Alternatively, if the subject assumes a horizontally

elongated distribution, i.e. a larger variance in the horizontal

distribution, the subject would prefer the horizontal rectangle, and

vice versa. (In practice, we never asked subjects to directly

compare a horizontal rectangle and a vertical rectangle. Instead,

we used a staircase method to determine the radii R0 of the circle

that the subject judged to be as ‘‘hittable’’ as any given rectangle

and compared these equivalent radii.)

Ten (Experiment 1) or eight (Experiment 2) different rectangles,

horizontal or vertical, were used and for each we measured its

equivalent radius R0, where the subject chose indifferently

between the rectangle and the circle (Figure 2C). Based on a

subject’s choices for varying pairs of targets, we are able to test the

variance and anisotropy of her distribution model.

In Trommershäuser et al.’s [7] task, subjects were facing ‘‘motor

lotteries’’ with the probabilities of different outcomes determined

by their own motor error. One concern is the possible effect of

probability distortions on the interpretation of these studies. It is

well-known that humans overweight small probability and

underweight large probability in classical decision tasks [10],

where they choose among economic lotteries. Wu, Delgado, and

Figure 2. The choice task. A. Example of a trial. A rectangle and a circle were displayed sequentially. Subjects were prompted ‘‘which is easier to
hit? 1st or 2nd?’’. B. Illustration of the isotropy test. One way to test the isotropy of subjects’ model of the motor error distribution is to compare
subjects’ equivalent radius for horizontal and vertical rectangles of the same size. It amounts to comparing the ‘‘hittability’’ of horizontal and vertical
rectangles. If the subject correctly assumes that the end points of her movement are vertically elongated, the subject would judge the vertical
rectangle as easier to hit than the horizontal one. Instead, the assumption of an isotropic distribution would lead to indifference between the two;
the assumption of a horizontally elongated distribution, a preference favoring the horizontal rectangle. C. Conditions. In Experiment 1, the rectangle
in a pair had two possible orientations and five possible sizes. For each rectangle the radius of the paired circle was adjusted by an adaptive staircase
procedure to obtain the equivalent radius, R0 . The set of rectangles used in Experiment 2 was similar except that there were four instead of five
possible sizes. See Methods.
doi:10.1371/journal.pcbi.1003080.g002

Testing Humans’ Model of Motor Uncertainty
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Maloney [11] show that people have systematic probability

distortions with motor lotteries as well, although in a reverse

pattern: they underestimated small probabilities and overestimated

large probabilities. Choice between targets in our task depends

only on ordering of the estimates of the probabilities of hitting

them – since the reward associated with success never varies – and

is thus insensitive to any distortion of probability. In particular, if

w p’ð Þ is any strictly increasing function of probability p’ which the

subject applies to the probabilities computed from Eq. 2, then

w p’1ð Þ~w p’2ð Þ precisely when p’1~p’2.

Results

We report the results of two experiments. For simplicity, we

focus on Experiment 1 and use Experiment 2 to address concerns

raised in Experiment 1. We first describe the true motor error

distributions measured in the training task. We then fit subjects’

responses in the probability choice task to a probabilistic model

with two free parameters and compared subjects’ models to those

of their true motor error distribution. We report large, systematic

deviations. Particular patterns in subjects’ model failures are

identified. Unless otherwise stated, the significance level used was

.05.

Experiment 1
True motor error distribution. The true error distribution

depends on the trajectory of the movement, which we controlled

by ensuring that participants started all reaches from a common

starting point (the space bar of our computer keyboard).

Additionally, the subject has some control over her motor error

distribution w x,yð Þ. Normally, she can move more or less quickly,

altering w x,yð Þ, and previous research demonstrates that humans

do trade speed for accuracy, information or reward [2–4]. By

imposing a time limit on the movement (from release of the space

bar to touch of the screen) we effectively eliminated this freedom.

Only movements completed within the time limit were included

into analysis. The end points for a typical subject are shown in

Figure 3A.

We first examined Q-Q plots of all subjects’ end points; as in

past work, the Q-Q plots were close to linear, indicating that

subject’s motor errors were close to bivariate Gaussian. In

Figure 3B we show the Q-Q plots for one typical subject.

For each subject, we fitted the x and y coordinates of the

endpoints to a bivariate Gaussian distribution. For simplicity, we

treated the x and y errors as independent (uncorrelated) and

estimated sx and sy by computing the standard deviation

separately for the horizontal and vertical direction. However, for

10 of the 18 subjects, the errors in the x and y directions were

significantly correlated (r ranged from 20.44 to 0.33). We verified

that the slight ‘‘tilt’’ introduced by correlation (e.g. Figure 3A) had

negligible effect on any of our further tests: Taking into account

the correlation would have no influence on the probability of

hitting circles and would change the probability of hitting any of

the rectangles we tested by no more than 3%.

Figure 3C shows the relationship between sx and sy. We tested

for equality of variance separately for each subject (one-tailed F

test). All subjects had a significantly larger sy than sx: the

distribution was vertically elongated. The median sy-to-sx ratio

across subjects was 1.44.

In summary, subjects’ estimated motor error distributions were

vertically elongated bivariate Gaussians. If we define the variance

parameter s0~
ffiffiffiffiffiffiffiffiffiffi
sxsy
p

and the anisotropy parameter a0~sy

�
sx, the

motor error distribution can be written as:

w x,yð Þ~ 1

2ps2
0

exp {
x2

2s2
0

�
a0

{
y2

2s2
0a0

 !
ð3Þ

Subjects’ model: Gaussian vs. area-matching. To allow

for concrete parametric comparisons, we estimate the subjects’

models of their own motor error distributions, y x,yð Þ , assuming

they have the same Gaussian form as w x,yð Þ but with possibly

different variance and anisotropy parameters:

y x,yð Þ~ 1

2ps2
exp {

x2

2s2=a
{

y2

2s2a

� �
ð4Þ

(We consider the possibility of other distributional forms in the

discussion.) Based on their choices, we estimated each subject’s s
and a (see Methods). Figure 4A shows the estimates of s and a,

relative to s0 and a0.

We considered the possibility that some subjects were choosing

the target of larger area rather than the target of larger probability

of a hit. If a subject used this area-matching strategy, his estimated

s would approach infinity. Indeed, the estimated s of a

considerable number of subjects were far greater than s0, up to

889 times of s0.

For each subject, we tested the Gaussian model (Eq. 4) against

an area-matching model (see Methods). The area-matching model

could be treated as a special case of the Gaussian model with

s?? and a~1. According to nested hypothesis tests [12], 10 out

of 18 subjects were better fit by the Gaussian model and the

remaining 8 subjects were better fit by the area-matching model.

For convenience, we call the former the Gaussian type, the latter

the area-matching type.

Subjects’ model: variance and anisotropy. We explored

the variance and anisotropy of the subjects of the Gaussian type

(Figure 4A, in green; we did not further examine the parameter

estimates for subjects of the area-matching type). If a subject’s

model were the same as her true motor error distribution, her data

point in Figure 4A would fall on the coordinate (1, 1). According to

the 95% confidence intervals of s=s0,a=a0ð Þ, all the subjects’

models deviated from their true motor error distributions.

For a bivariate Gaussian distribution, the central regions have

higher probability density than peripheral regions. Because circles

are more concentrated than rectangles, a circle that is as equally

‘‘hittable’’ as a specific rectangle should be smaller than the

rectangle in area. Intuitively, the larger the variance parameter s,

the more dispersed the assumed distribution, the larger the

equivalent radius for a specific rectangle.

For most of the subjects of the Gaussian type, the estimated

internal variance was close to their true variance (Figure 4A). For 4

out of these 10 subjects, s=s0 was not significantly different from

one. Four subjects’ s=s0 were significantly less than one and two

subjects, significantly greater than one.

The anisotropy parameter a determines the perceived relative

‘‘hittability’’ of horizontal and vertical rectangles, as we illustrated

in the Introduction. If two rectangles have the same size, the larger

the a, the larger the equivalent radius of the vertical rectangle

relative to that of the horizontal rectangle.

All the subjects of the Gaussian type underestimated the vertical

anisotropy of their true distribution, with all their a=a0 signifi-

cantly less than one. We plotted a against a0 (Figure 4B) and

further examined whether subjects’ a was sensitive to their true

anisotropy a0. Subjects’ a0 varied from 1.14 to 1.64. There was no

significant correlation between a and a0, Pearson’s r = .34, p = .34.

Testing Humans’ Model of Motor Uncertainty
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Instead, a was always close to one. For 8 out of the 10 subjects, the

a was indistinguishable from one. That is, most of the subjects of

the Gaussian type incorrectly treated their error distribution as

isotropic.

To summarize, there were two patterned biases in subjects’

models in the probability choice task: First, approximately half of

the subjects failed to take their own motor error distributions into

account and evidently based their choices on the areas of the

targets instead. Second, among the subjects who correctly assumed

a Gaussian model, 4/5 of them incorrectly assumed the vertically-

elongated distribution to be isotropic.

Results of the area choice task. As a control for the

probability choice task, in a subsequent area choice task, subjects

were asked to choose which target was larger in area. We

investigated whether the Gaussian and area-matching subjects also

differed in their judgment of area.

In the area choice task, the equivalent radii of subjects of the

area-matching type were close to the true area equivalent radii (i.e.

area-matching) while subjects of the Gaussian type had smaller

equivalent radii than the true (Figure 5B). This separation

resembled that in the probability choice task (Figure 5A).

For probability choice, the reason equivalent radii are expected

to be smaller than true radii is that the probability of hitting a

circle is larger than hitting a rectangle equal in area: a circle fits

more compactly near the center of an isotropic Gaussian error

distribution. This effect reflects the implicit motor model because

the radius difference is most dramatic for sharper Gaussians

(smaller s=s0) and vanishes in the limit of the infinite variance

Gaussian (i.e., area matching). Accordingly, that their equivalent

radii are smaller even in the area choice task suggest that subjects

of the Gaussian type compensated for the probabilities of hitting

targets even when judging area, although not as much as they did

in the real probability choice task: their median s=s0 was 0.97 in

the probability choice task and 2.29 in the area choice task.

Indeed, we found that 8 out of 10 Gaussian subjects’ area

choices were better fitted by the Gaussian model than by the (now

appropriate) area-matching model. In contrast, only 2 out of 8

area-matching subjects were better accounted by the Gaussian

model. Subjects of the Gaussian type had a significantly larger

proportion to incorrectly assume Gaussian in the area choice task,

according to a Fisher’s exact test.

We verified that subjects were not just confusing the

probability and area choices and they did have different

equivalent radii (R0) in the two tasks. For each subject, we

submitted the log differences between their probability R0’s

and area R0’s to a one-sample two-tailed Student’s t-test. The

probability R0’s were indistinguishable from the area R0’s for

only one subject who was of the area-matching type. The

probability R0’s were significantly smaller than the area R0’s

for all the 10 subjects of the Gaussian type and 4 subjects of the

Figure 3. True error distribution in Experiment 1. A. End points of one subject in the training task. Blue dots denote end points. The grey filled
circle denotes the target. Yellow diamond marks the centroid of the target. The distribution of the errors is bivariate Gaussian, elongated in the
vertical direction. B. Q-Q plots for the end points of the subject. The quantiles of the horizontal and vertical positions of the end points are plotted
against the standard normal quantiles. The linear relationship in both directions implies that the distribution of the end points is bivariate Gaussian. C.
The standard deviations of the end points in the horizontal (sx) and vertical (sy) directions. Each point is for one subject. All subjects had a larger sy

than sx. That is, their distributions were vertically elongated. The median sy-to-sx ratio across subjects was 1.44.
doi:10.1371/journal.pcbi.1003080.g003

Testing Humans’ Model of Motor Uncertainty
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Gaussian type. The remaining 3 subjects of the area-matching

type had the probability R0’s significantly larger.

Experiment 2
In Experiment 1, subjects’ models of their own motor error

distributions had patterned deviations from the true distributions.

In Experiment 2, we tested whether these deviations could be

eliminated or reduced by two manipulations.

First, we tested the effect of having more reaching experience

with a single target, which might be expected to improve subjects’

motor models. In the training phase of Experiment 1, subjects

made 300 speeded reaches to a circular target of fixed size. We

Figure 4. Subjects’ models in probability choices in Experiment 1. Each circle denotes one subject. Error bars denote 95% confidence
intervals. s0 and a0 are the variance and anisotropy parameters of the true distribution w x,yð Þ (Eq. 3). s and a are their counterparts in the subject’s
model y x,yð Þ (Eq. 4). A. a=a0 plotted against s=s0. Among the 18 subjects, 10 subjects (the Gaussian type, in green) were better fit by the Gaussian
model, who had internal variance close to true (s=s0 close to 1) but who underestimated the vertical anisotropy of their true distribution (a=a0v1).
The remaining 8 subjects (the area-matching type, in gray) were better fit by the area-matching model, as if they were comparing the areas rather
than the probabilities of hit of the targets. Four subjects of the area-matching type resulted in too large s=s0 (13, 19, 57, 889) and were not plotted. b.
a plotted against a0 for subjects of the Gaussian type. Note that a was close to 1 regardless of the value of a0 for most subjects. That is, the
distribution was incorrectly assumed to be isotropic in subjects’ model.
doi:10.1371/journal.pcbi.1003080.g004

Figure 5. Probability vs. area choices in Experiment 1. Equivalent radius in the probability choice task (A) and in the area choice task (B) are
plotted against the true area equivalent radius. Each dot is for one subject and one rectangle condition. Green denotes subjects of the Gaussian type.
Gray denotes the area-matching type. Note that the probability choices of the area-matching type improperly agreed with the predictions of area-
matching, while the area choices of the Gaussian type improperly deviated from the true area equivalent radii.
doi:10.1371/journal.pcbi.1003080.g005

Testing Humans’ Model of Motor Uncertainty
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doubled the training trials to 600 in Experiment 2. As in

Experiment 1, all subjects’ true distributions were vertically

elongated, bivariate Gaussian distributions.

Even with this more extensive training, among 12 new subjects,

there were 2 subjects who were better fit by the area-matching

model. Although this proportion is numerically smaller than that

in the first experiment, the difference was statistically insignificant,

according to a Fisher’s exact test.

For the 10 subjects of the Gaussian type (green circles in

Figure 6A), 5 subjects’ s=s0 were indistinguishable from one and 5

subjects’ s=s0 were significantly greater than one.

As in Experiment 1, most of these subjects, though not all,

underestimated the vertical anisotropy of their distributions. Six

out of the 10 close-to-one subjects’ a=a0 were significantly less than

one (Figure 6A). Four subjects’ a=a0 were indistinguishable from

one, but among them, three had a=a0 between 0.42 and 0.60 – the

inability to reject the null hypothesis was probably just because of

the inaccuracy of the measurement (see Figure S1 for an

illustration).

The second manipulation we added in Experiment 2 was to

include a final experimental phase in which subjects would choose

which of two targets they would prefer to hit and, immediately

after choosing the target, subjects would actually make a speeded

reach to the target and watched its consequence. This task gave

subjects an opportunity to observe the probability of hit of targets

of different shapes and sizes. It came after the probability choice

phase (which was conducted, as before, with no feedback), so it

would have no influence on the results of the latter that we

reported above.

In the feedback phase, none of the 12 subjects were better fit by

the area-matching model. All the subjects’ s=s0 were less than

those in the non-feedback task (Figure 6AB). Six of the 12 subjects

now significantly underestimated their variance.

As to a=a0 (Figure 6C), 4 out of the 6 subjects who significantly

underestimated the vertical anisotropy in the non-feedback task

had no improvement (those whose error bars cross the identity

line) and one subject performed even worse (those whose error

bars are under the identity line).

To summarize, receiving feedback on a variety of targets

appears to correct the area-matching strategy but does not

improve underestimation of variance or anisotropy.

Discussion

We reported two experiments testing whether humans have

accurate internal models of their own motor error distributions. In

the first part of the experiments, subjects executed the reaching

movements hundreds of times, allowing us to measure the error

distribution of their end points. Though differing in variance, the

distributions were all well characterized as bivariate Gaussian, all

elongated in the vertical direction. Subjects were moving from a

keyboard below the screen to the screen. A larger variance along

the direction of movement (upward) is often reported [13–15].

Figure 6. Subjects’ model in Experiment 2. A. a=a0 plotted against s=s0. Each circle or square denotes one subject. Green circles denote the
non-feedback task (the two area-matching subjects, whose a=a0 were 15 and 1210, were not plotted). Blue circles and gray squares respectively
denote the performances in the feedback task for subjects who belonged to the Gaussian type and the area-matching type in the preceding non-
feedback task. B. s=s0 in the feedback task against s=s0 in the non-feedback task. C. a=a0 in the feedback task against a=a0 in the non-feedback task.
Error bars denote 95% confidence intervals.
doi:10.1371/journal.pcbi.1003080.g006
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Next, subjects were asked to repeatedly choose between two

targets, selecting the one that appeared easier to hit. Based on their

choices we tested two aspects of their internal model of their own

distribution, variance and anisotropy.

The two experiments led to converging results: More than half

of the subjects had accurate or almost accurate estimation of their

own variance (no more than twice and no less than half of the true

variance), while the rest failed badly, markedly overestimating

their own variances or not taking into account their variance at all.

Almost all the subjects failed to have an accurate estimate of how

their distribution was shaped, incorrectly assuming a more

isotropic distribution.

These failures are unexpected. Previous studies have shown

close-to-optimal compensation for motor uncertainty [2–8]. In

most of the studies [e.g. 7], subjects’ decision under motor

uncertainty was indicated implicitly by their movement. But close-

to-optimal compensation was also observed in tasks resembling

ours where explicit choices between two alternative options were

required [16]. Patterned failure in compensating for motor

uncertainty has seldom been reported.

As an exception, Hudson, Tassinari, & Landy [17] added

anisotropic noise to the visual feedback of subjects’ movements

and found that people ignored the induced anisotropy. Our results

in testing isotropy are consistent with theirs. But in their case, the

artificial visual feedback conflicted with subjects’ sensorimotor

feedback. It is possible that subjects were just giving a higher trust

to their own sensorimotor feedback. Our results are free of such

possibilities: people do not correctly compensate for anisotropy

even when the anisotropy emerges naturally.

The finding that a considerable proportion of subjects did not

base their choices of movements on a model of their own

distribution is unexpected and striking. However, it is not

necessarily in conflict with previous studies where human

performance is found to be close to optimal [7]. In previous

studies, subjects performed real movements and received feedback

in the test task as in the feedback task of our Experiment 2, where

no subjects followed the area matching strategy.

In specific task situations, people can compensate for a missing

or inaccurate model of their motor error distribution by using

intuitive strategies. This is demonstrated in an anomaly reported

by Wu et al. [18]. They used the same task as Trommershäuser et

al. [7] with a different reward landscape and found sub-optimal

human performances. In Trommershäuser et al. [7], the optimal

aim point fell on the symmetrical axis and within the rewarding

circle, both of which were highly intuitive. In contrast, Wu et al.

[18] used an asymmetrical reward landscape that consisted of one

rewarding circle and two penalty circles. The optimal aim point

fell within one of the penalty circles. Subjects’ failure in this

counter-intuitive situation suggests that apparently optimal per-

formances may rely on simple intuitive strategies.

An underestimation of variance, observed for half of the subjects

even with feedback (Experiment 2), is probably not as costly to the

same extent as an overestimation in the sorts of tasks considered by

Trommershäuser and colleagues. Subjects in Trommershäuser et

al.’s [7] task also received feedback after every trial and potentially

this led to underestimation of variance in that experiment. We

considered whether a considerable underestimation of their own

motor variance could be compatible with humans’ close-to-

optimal performances. As we stated in the Results, in Trommer-

shäuser et al.’s [7] task, if subjects overestimated their variance to

up to 4 times the true variance (s=s0~2), their expected gain

would be only 74% of the maximum expected gain. To our

surprise, however, if subjects underestimated their variance to 1/4

of the true variance, (s=s0~1=2), their expected gain would be as

high as 96% of the maximum expected gain. That is, at least in

this situation, an underestimation of variance incurred little

penalty.

Subjects’ failures in our experiment could not be attributed to a

mere lack of experience. Before the two choice tasks, subjects

repeated the reaching movements for over 300 or 600 times and

the position of the endpoint was provided after each reach.

Moreover, goal-directed reaching is arguably among the most

practiced motor tasks of everyday life. Therefore, it is a mystery

that people are not able to model their own motor error correctly

and exhibit considerable and patterned deviations. Whence come

their incorrect models? When will incorrect models be abandoned

and be replaced by the correct ones?

For example, why did subjects assume an isotropic distribution?

We conjecture that they were trying to use a model that is as

simple as possible to fit their observations. When observations are

few even a real isotropic distribution may be better fit by an

anisotropic model. Thus, by adopting a simpler model, subjects

could avoid over-fitting their observations. The problem is: why

should people stick to an incorrect model even after hundreds of

observations?

Another intriguing fact is the double dissociation between

subjects of the Gaussian type and subjects of the area-matching

type. For the area-matching subjects, area-matching seems to be

their substitute strategy for the probability choice task; while for

the Gaussian subjects, ‘‘probability-matching’’ seems to be their

substitute strategy for the area choice task. If we consider the area

of a target to be the integration of a unit probability density across

the target region, area choices are comparable to probability

choices. Is there any common process involved?

The choice task we designed in the present study is a powerful

tool for determining what people ‘‘know’’ about their motor error

(or more precisely, what model of motor error is consistent with

their choice performance). It only asks for an ordering of

probabilities. It does not depend on a utility function, since the

two targets they are choosing from are associated with the same

amount of reward. It is not influenced by how probability is non-

linearly distorted [10,19], so long as the distortion function retains

the order of the probability scale.

Our task differs from most other motor decision tasks [e.g.

2,7,9] in two respects that might in principle produce different

results: the choices are binary rather than continuous, and concern

hypothetical future rather than immediately actualized move-

ments. For example, people may not have full access to their

motor uncertainty in the absence of real movement planning or

execution. The existing evidence, however, does not suggest

human choices in a binary, hypothetical motor task would

necessarily differ from those in continuous, actualized movements.

First, close-to-optimal performances were found in previous

studies on binary, hypothetical motor decisions [16]. Second, the

neural circuits activated by real and imagined movements are

highly similar [20,21].

In the present study, we estimated subjects’ behavior using a

Gaussian distributional assumption to allow direct quantitative

comparison with the ideal observer model in terms of that model’s

parameters. Of course, it is possible that subjects assumed a

different distributional form subjectively, or even chose based on

some heuristic that does not directly correspond to the decision

theoretic model for any distribution. Although both of these

possibilities are interesting hypotheses for the source of the sub-

optimality we reveal, even if true they would not invalidate the

results of the present analysis in using the Gaussian fits

descriptively to characterize the existence and nature of deviation

from the ideal observer. As pointed out by Geisler [22], it is
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valuable to compare actual to ideal even when people are not

ideal.

What distinguishes our study from previous studies is an

exploration of the most likely model implicit in each individual’s

performances. We broke down the ideal observer into multiple

dimensions (variance and anisotropy) and assessed human

observers on these dimensions. The multi-dimensional tests

accommodate the possibility that a specific individual may deviate

from the ideal observer on some dimensions but not others, which

a one-dimensional test would not afford. The deviation on each

dimension is separable in subjects’ choices. Our task is thus

sensitive to the each particular individual’s possible deviations

from ideal and provides alternative models to ideal.

In a recent article [23] we found people do not have an accurate

model of their own visual uncertainty. Subjects chose between

visual discrimination tasks that could differ in location (retinal

eccentricity) and contrast. By examining subjects’ choices we could

test what they implicitly assumed about their own retinal sensitivity

in the periphery. We found that all but one subject was not even

consistent in their choices: the pattern of choices violated

transitivity of preference, i.e. in some cases they preferred lottery

A over lottery B and lottery B over lottery C but, finally, lottery C

over lottery A.

Had we simply compared subjects’ performances to optimal in

Zhang et al [23] and the present paper, we would only have

concluded that subjects’ performance was less than ideal,

overlooking the striking patterns of failure and individual

differences that we instead found.

Methods

Ethics statement
The experiment had been approved by the University

Committee on Activities Involving Human Subjects (UCAIHS)

of New York University and informed consent was given by the

observer prior to the experiment.

Experiment 1
Subjects. Eighteen subjects, ten female and eight male,

participated. All had normal or corrected-to-normal vision and

were not aware of the purpose of the experiment. Fourteen of

them were right-handed and four left-handed. All used the index

finger of the dominant hand for the speeded reaching task.

Subjects received US$12 per hour plus a performance-related

bonus.

Apparatus and stimuli. Stimuli were presented in a dimly lit

room on a 170 (33.8627 cm) Elo touch screen mounted vertically

on a Unistrut frame. The display was controlled by a Dell Pentium

D Optiplex 745 computer using the Psychophysics Toolbox

[24,25]. The end points of subjects’ reaching movements to targets

on the touch screen were recorded by the touch screen. To

optimize the recording accuracy, a touch screen calibration

procedure was performed for each subject.

Subjects were seated at a viewing distance of 30 cm with the aid

of a chinrest. Blue filled shapes appeared on a black background.

The shape in all tasks was positioned at the center of the screen

offset by a small random jitter uniformly distributed in the range of

61 cm horizontally and vertically. Subjects started their reach

from a key on the keyboard, which was 28 cm away from the

screen in depth and 20.5 cm below the screen center. The total

distance from starting point to the center of the target was

34.7 cm.

Procedure and design. Subjects completed three tasks in a

sequence: training, probability choice, and area choice. The training task

took approximately 25 min. Each choice task took approximately

80 min. The training and probability choice tasks were conducted

in the first session. The area choice task was conducted in a second

session on a different day.

Training. The training task was to touch a circular target

(1.4 cm in diameter) on the touch screen within 400 milliseconds.

It allowed us to estimate each subject’s true motor error

distribution. Further, it provided subjects an opportunity to

observe their own motor error.

Subjects started each trial by holding down the space bar of the

keyboard with their index finger to trigger the presentation of the

target. They were required to complete the reaching movement

within the time limit. The movement time included the time from

when the subject released the space bar to the time the finger

touched the screen. If subjects completed the movement within the

time limit, they would be informed whether it had been a hit or

miss and a white dot would indicate the position of their end point.

Otherwise, they would see a warning message.

We motivated subjects with performance-based bonuses and

penalties. Subjects knew that at the end of the training phase that

eight trials would be randomly drawn from the experimental trials

they had just performed. For each of these bonus trials, they would

win $1 for hit, zero for miss, or lose $1 for time-out.

There were 300 training trials. To reduce fatigue, subjects were

encouraged to take a break whenever they were tired and were

required to take a 2-minute break after every 100 trials. There

were 50 additional warm-up trials for subjects to familiarize

themselves with the touch screen and the time limit.

Probability choice. In the probability choice task, subjects chose

which of two targets would be easier to hit if they attempted to hit

it as they had hit targets in the training task. Subjects were

instructed to imagine they would try to hit the targets from the

same starting position and under the same time limit as they had

just done in the training task. The probability choice task was

conducted immediately after the training task while subjects’

experience of the training task was still fresh.

The time course of the task is shown in Figure 2A. A trial began

with a fixation cross. Two shapes, a circle and a rectangle, were

displayed sequentially in a random order. Each display lasted for

0.5 sec and was separated by a 0.5 sec blank screen. Subjects were

prompted to make the choice ‘‘which is easier to hit? 1st or 2nd?’’

Responses were made by key press.

There were 10 different rectangles (Figure 2C). The width-to-

height ratio of the rectangle was either 4:1 (horizontal rectangle) or

1:4 (vertical rectangle). The rectangle had five possible sizes, tuned

to each subject’s motor variance. We define the mean standard

deviation of motor errors as s0~
ffiffiffiffiffiffiffiffiffiffi
sxsy
p

, where sx and sy are

respectively the standard deviations of the positions of the end

points (time-out trials excluded) in the horizontal and vertical

directions. The five possible short-side lengths of the rectangle

formed a geometric sequence: s0, 1:30s0, 1:69s0, 2:20s0, 2:86s0.

The radius of the circle was adjusted by an adaptive staircase

procedure. For each of the 10 rectangles, there were one 1-up/2-

down and one 2-up/1-down staircases for its paired circle. The

radius of the circle was increased or decreased multiplicatively.

The step sizes were 0.115, 0.075, 0.05, 0.04 in log units,

respectively for the first, second, third and the remaining reversals.

A staircase terminated after 50 trials. All 20 staircases were

interleaved with each other.

The 20 staircases 650 = 1000 trials were run in blocks of 100

trials, preceded by 20 warm-up trials. Trials were self-initiated by a

key press. Subjects were encouraged to take a break whenever

tired. As an incentive, subjects were instructed that, at the end of

the experiment, they would attempt to hit eight of the targets they
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preferred. They were rewarded for hits on these trials just as in the

training task. The eight targets were randomly selected from the

targets that they had judged to be easier to hit.

Area choice. The area choice task was a control to the

probability choice task, where the same stimuli were used but now

the task was to choose the alternative that was larger in area.

Subjects were rewarded for correct responses. Subjects were

instructed that eight trials would be selected at random after they

completed the 1000 trials. For each of the trials, subjects would

win $1 if their choice had been correct.

Experiment 2
Subjects. Twelve new naı̈ve subjects, six female and six male,

11 right-handed and one left-handed, participated.

Apparatus and stimuli. Same as Experiment 1, except that

no chinrest was used.

Procedure and design. Subjects completed three tasks in

one session in the following order: training, probability choice, and

probability choice with feedback. The first two tasks were the same as

those of Experiment 1. The task of probability choice with

feedback was similar to a combination of the tasks of probability

choice and training. On each trial, subjects first chose between

two sequentially displayed targets the one that was easier to hit.

After that, they initiated a pointing trial by placing their index

finger on the space bar and would try to hit the target they chose

within the time limit. Feedback of the endpoint was given as in

the training task. The bonus rule was the same as that of the

training task.

In the two tasks of probability choice, same as Experiment 1,

rectangles’ sizes were tuned to each subject’s motor variance and

the radius of the circle was adjusted by adaptive staircase

procedures. The design differed from Experiment 1 only in the

sizes of rectangles and settings of staircase procedures. There were

8 (2 orientations by 4 sizes) different rectangles, whose short-side

lengths were: s0, 1:40s0, 1:96s0, 2:74s0. For each of the 8

rectangles, there was one 1-up/1-down staircase that terminated

after 60 trials. (The motivation for us to adopt the one 1-up/1-

down staircase for each rectangle rather than the one 1-up/2-

down and one 2-up/1-down staircases in Experiment 1 was to use

fewer trials to estimate each equivalent radius. This change would

not introduce any known biases into the estimation of equivalent

radius, given the data fitting procedures described below.) The

step sizes were 0.15, 0.1, 0.08, 0.06 in log units, respectively for the

first, second, third and the remaining reversals. Interleaved, the 8

staircases660 = 480 trials were run in blocks of 60 trials, preceded

by 8 warm-up trials.

Data fitting
Equivalent radius. For a specific rectangle in a choice task,

we defined the equivalent radius (R0) as the radius of the circle such

that the subject was indifferent between the rectangle and the

circle in her choice. The method of eliciting the equivalent radius

was as follows.

For each subject and each specific rectangle, we assumed that

the probability of choosing the circle was a Quick-Weibull

psychometric function [26,27] of the radius of the circleR:

F Rð Þ~1{exp {
R

l

� �c� �
ð5Þ

where l is a position parameter and c is a steepness parameter.

Assuming that different rectangles were associated with different l
but a common c, we estimated l and c for each rectangle by fitting

the responses of the staircase trials to Eq. 5 using maximum

likelihood estimates.

By the definition of equivalent radius, F R0ð Þ~0:5. Substituting

into Eq. 5 and solving it, we have

R0~l { ln 0:5ð Þð Þ1=c: ð6Þ

Our estimates of equivalent radius were based on our estimates of

l and c for each subject substituted into Eq. 6.

We verified that staircases converged for subjects of the area-

matching type as well as for subjects of the Gaussian type (Figure

S2). The steepness parameter c in Eq. 5 can serve as an indicator

of the subject’s choice consistency. The larger the c, the more

likely the subject would make the same choice between a specific

rectangle and a specific circle. We compared the choice

consistency of subjects of the Gaussian type to that of the area-

matching type. According to two-sample, two-tailed Student’s t-

tests, the c elicited from the probability choice task was

indistinguishable between the two groups in both Experiment 1,

t(16) = 0.81, p = .43, and Experiment 2, whether in choices with no

feedback, t(10) = 0.87, p = .40, or with feedback, t(10) = 20.40,

p = .70.

Gaussian model. For each subject, we used their equivalent

radii to estimate the variance parameter s and the anisotropy

parameter a in the bivariate Gaussian probability density function

(Eq. 4). By definition, each rectangle (T1) and its equivalent circle

(T2) were perceived to be equivalent in probability of hit:

ð
T1

y x,yð Þ dx dy~

ð
T2

y x,yð Þ dx dy ð7Þ

Substituting Eq. 4 into Eq. 7, we have an equation of s and a:

ð
T1

1

2ps2
exp {

x2

2s2=a
{

y2

2s2a

� �
dx dy

~

ð
T2

1

2ps2
exp {

x2

2s2=a
{

y2

2s2a

� �
dx dy

ð8Þ

That is, for any specific rectangle, we could compute its equivalent

radius as a function of s and a based on Eq. 8. We assumed that

the logarithms of the measured equivalent radii deviated from the

predicted equivalent radii by random additive Gaussian noise

*N 0,e2
g

� �
. We used maximum likelihood estimates to fit the

measured equivalent radii to obtain s, a, eg.

Area-matching model and model comparison. We tested

area-matching as an alternative model for subjects’ choices. That

is, the subject would choose the target of a larger area, as they

should do in the area choice task. In particular, we assumed that

the logarithms of the measured equivalent radii deviated from the

logarithms of the true area equivalent radii only by a random noise

*N 0,e2
a

� 	
. We fitted ea using maximum likelihood estimates.

The area-matching model is a special case of the Gaussian

model (Eq. 4): when s?? and a~1, the Gaussian model would

result in the same choices as the area-matching model does. We

used nested hypothesis tests [12] to test the Gaussian model against

the area-matching model. Denote the log likelihoods of the

Gaussian model and the area-matching model as lg and la. We

computed a test statistic D~lg{la. If the model with fewer

parameters – the area-matching model – is the correct model then
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this test statistic is asymptotically distributed as a x2 random

variable with degrees of freedom equal to the difference in number

of parameters in the two models under comparison. Accordingly

we compared D to the 95th percentile of a x2
2 distribution.

Confidence intervals. We computed the 95% confidence

intervals of s=s0, a=a0, a, a0 using a bootstrap method [28]. For

each subject, we ran a virtual experiment for 1000 times and

estimated the above measures on each run. In the training task,

endpoint positions were resampled from the non-time-out trials. In

the probability choice task, the responses of each staircase trial was

generated by parametric resampling [29] from the psychometric

functions (Eq. 5) that was fitted with the real data.

Supporting Information

Figure S1 Illustration of the difficulty in estimating a as
s=s0 increases. For the specific rectangle conditions (propor-

tional to s0) in Experiment 1, the equivalent radii R0 are

computed for a virtual observer who assumes an error distribution

in the form of Eq. 4 with parameters s and a. The predicted R0

for a~1:44 and for a~1 are plotted against each other to show

how the virtual observer’s R0 would differ for different a when the

s=s0 is the same. The identity line corresponds to no difference at

all. Each panel is plotted for a different s=s0. Note that as the

s=s0 increases, the effect of varying a diminishes. In the real

experiment, at the existence of response noise, a smaller difference

implies less discriminability. That is, a could not be precisely

determined when s=s0 is large enough.

(TIFF)

Figure S2 Staircase convergence in the probability
choice task of Experiment 1. The radius of the circle was

plotted as a function of the trial No. of each staircase for typical

subjects of the Gaussian type (left) and the area-matching type

(right). Top panels are for horizontal rectangles; bottom panels for

vertical rectangles. Blue circles and red X’s denote 1-up/2-down

and 2-up/1-down staircases. Visually scrutinized, staircases of

both subjects were well converged (see the Methods for a formal

comparison of staircase convergence between the two types of

subjects).

(TIFF)
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